Step of Proof: iff_imp_equal_bool
9,38
postcript
pdf
Inference at
*
1
I
of proof for Lemma
iff
imp
equal
bool
:
1.
a
:
2.
b
:
3. (
a
)
(
b
)
a
=
b
latex
by ((((OnCls [2;1] BoolCases)
CollapseTHEN (RWH assert_evalC (-1)))
)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1. False
True
C1:
2. False
True
C1:
ff = tt
C
2
:
C2:
1. True
False
C2:
2. True
False
C2:
tt = ff
C
.
Definitions
ff
,
P
Q
,
if
b
then
t
else
f
fi
,
tt
,
t
T
,
Unit
,
b
,
P
Q
,
,
Lemmas
bfalse
wf
,
btrue
wf
origin